Large deviation principle for some measure-valued processes
نویسندگان
چکیده
منابع مشابه
Large deviation principle for enhanced Gaussian processes
We study large deviation principles for Gaussian processes lifted to the free nilpotent group of step N . We apply this to a large class of Gaussian processes lifted to geometric rough paths. A large deviation principle for enhanced (fractional) Brownian motion, in Hölderor modulus topology, appears as special case. © 2007 Elsevier Masson SAS. All rights reserved. Résumé Nous etudions les princ...
متن کاملA large deviation principle for the Yang-Mills measure
We prove the first mathematical result relating the Yang-Mills measure on a compact surface and the Yang-Mills energy. We show that, at the small volume limit, the scaled Yang-Mills measures satisfy a large deviation principle with the Yang-Mills energy as rate function. This gives some rigorous content to the informal description of the Yang-Mills measure as the Gibbs measure of the Yang-Mills...
متن کاملLarge Deviation Principle for Non-Interacting Boson Random Point Processes
Limit theorems, including the large deviation principle, are established for random point processes (fields), which describe the position distributions of the perfect boson gas in the regime of the Bose-Einstein condensation. We compare these results with those for the case of the normal phase.
متن کاملLimit Theorems for Some Branching Measure-valued Processes
We consider a particle system in continuous time, discrete population, with spatial motion and nonlocal branching. The offspring’s weights and their number may depend on the mother’s weight. Our setting captures, for instance, the processes indexed by a Galton-Watson tree. Using a size-biased auxiliary process for the empirical measure, we determine this asymptotic behaviour. We also obtain a l...
متن کاملA large deviation principle for Dirichlet posteriors
Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2015
ISSN: 0304-4149
DOI: 10.1016/j.spa.2014.10.008